DIGEST | TRANSPORTATION ¢ CITIES & BUILDINGS

Electric Vehicle
Penetration and Urban
Spatial Restructuring:
A Case Study of
Beljing with Geospatial
Machine Learning

SEPTEMBER 2025
Jing Kang, Zhongjie Lin, Hui Kong

Kleinman Center
for Energy Policy



Electric Vehicle
Penetration and
Urban Spatial
Restructuring:

A Case Study

of Beljing with
Geospatial
Machine Learning

SEPTEMBER 2025
Jing Kang, Zhongjie Lin, Hui Kong

Introduction

The number of electric vehicles (EV) on the road has
been growing rapidly, reaching more than 60 million
worldwide. Nearly 13 million EVs were sold in China
alone, which is the world’s largest EV market. This
exponential growth results both from the advancement
of technologies, such as batteries, and from the
generous incentives implemented by governments
around the world. However, in many markets, issues
have also emerged as cities are struggling to integrate
EVs into their spatial and infrastructure planning.

Despite ambitious zero-emission targets, EV
penetration remains a small portion of global
transportation. Integrating EVs into urban
environments, particularly assessing their impact on
existing systems, is largely unexplored and uncertain.
Rising EV adoption is also creating new costs and
potential resource waste due to oversupply, especially
in urban centers (Kang et al. 2022).

In typical Chinese urban centers, the average utilization
rate of public charging infrastructure is below 13%
(China Academy of Urban Planning and Design

2023). Cities often prioritize deploying numerous
public charging stations in commercial areas, parks,
transportation hubs, and other public spaces. However,
many of these locations face oversupply and reduced
service efficiency.

Furthermore, the link between increasing EV adoption
and evolving urban spatial structures remains under-
researched. This gap may lead to reduced investment
returns and missed opportunities for sustainable
planning. To improve infrastructure efficiency and
resilience, planners must carefully consider integrating
EV systems with the existing urban framework.

While the significant influence of growing EV
penetration on future city structures is acknowledged,
the details of this transformation are unclear. A critical
need exists to explore the relationships between rising
EV adoption and urban expansion patterns, including
changes in land use dynamics and the interaction
between EVs and public transportation.

To address these challenges, this study investigates
the non-linear relationship between EV penetration
rates and key aspects of the built environment. Utilizing
multi-source geospatial big data, including anonymized
residential data of EV users and charging request

data from location-based services (LBS), we employ
geospatial analytics and machine learning models.

First, GIS-based spatial analytics are used to visualize
the residential patterns of EV users in relation to
built-environment variables: land use mix, building
coverage ratio, accessibility to public charging and
transit, employment density, and local economic

3f



3  kleinmanenergy.upenn.edu

productivity (GDP). Subsequently, a machine learning
model assesses the non-linear correlations between
residential EV penetration rates and these built-
environment variables.

Case Study and Data Source

This investigation centers on two key questions: how
to quantify and assess the interaction between EV
penetration and the evolving built environment in urban
research, and how to inform EV proliferation in urban
planning and governance. Beijing serves as the primary
case study. As a global leader in EV promotion, Beijing
incentivizes EV ownership through direct subsidies

and exemptions from gasoline car restrictions. By
2022, over 600,000 EVs were registered in Beijing. This
rapid EV growth is reshaping Beijing’s urban layout and
influencing infrastructure strategies.

Beijing’s centripetal urban structure, defined by its
ring road system, intricately interacts with the spatial
distribution of population densities, shaped by
historical and economic forces. The increasing number
of EVs and their supporting infrastructure are now
integral to this dynamic, actively influencing the city’s
ongoing development. As EVs become a dominant
feature of Beijing’s transportation, understanding their
reciprocal effects on urban spatial transformation is
crucial for future infrastructure decisions and urban
governance strategies.

The datasets for this study originate from various
channels. The principal spatial unit of analysis is the
urban parcel, representing built-up areas and serving
as the foundational unit for spatial analysis and
modeling (Gong et al. 2020).

We compiled 24,778 EV charging records (from public
stations in November 2019), and EV owner home
locations were derived from location-based services
(LBS) data sourced from Baidu Maps, China’s leading
mobile map service. After data cleaning, the final
dataset used for analysis and modeling comprised

2,970 parcels with 20,387 active EV residents (engaging

in public charging). EV users were aggregated to urban
parcels and spatially integrated with other variables
using ArcGIS Pro.

Euclidean distance is used as the distance metric.
Gridded GDP data is sourced from remote sensing-
calibrated nighttime light data (Chen et al. 2022).
Accessibility to metro and public charging stations

is gauged by public transportation service capabilities.
Population and employment densities are derived
from Baidu heat map big data, a validated source
(Fang et al. 2020).

Densities of public transportation services (metro
stations, bus stops, public charging stations)

and surrounding amenities (land use categories)
are measured using point of interest (POI) data.
The service capacity and convenience of these
amenities are calculated using the land use mix
entropy approach, considering supermarkets,
commercial buildings, primary and middle schools,
universities, hospitals, and entertainment venues.
The formula reads:

_ —Slehie) )
n

S

Here, c; represents the ratio of each surrounding
amenity category within each parcel, and [V is the
total number of amenity categories, which is six in
this study.

Accessibility was calculated using the cumulative
opportunity method to evaluate spatial separation
effects (Xiao et al. 2017).

Ay =3 f(ds)

1—?, dij<R

fldij) =
(dij) 0 dz’jZR(z)

Here, Aij represents the accessibility index,
summarizing the service capacity and convenience

of surrounding amenities for residents in each parcel.
The term dij denotes the Euclidean distance from the
center of parcel ¢ to amenity j. The threshold distance,
R, is set at 1.5 km, a value commonly used in studies as
a walkable distance for typical daily life circles.
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Table 1: Overview of Variables and Descriptions

Variable Denotation Description Mean SD Min Max
: _ EVresident
) EV resident rate =log (m X 100) (each parcel) 0.16 0.27 0.00 2.00
Employment density Working population density of each parcel 701 148 0.00 1115
(counts/km?)
T Surroundlng amenities/ To measure the service capacity and convenience 018 0.32 0.00 240
Land use mix of each parcel
Thg proportlon of The ratio of total building areas and parcel areas 0.20 0.10 0.00 072
building areas (range between 0 and 1)
Density of bus station The density of bus stops from POI (counts/km?) 0.00 0.00 0.00 0.02
i) Metro accessibility 1.39 1.93 0.00 12.37
To measure public transport service capability,
based on formula (1) ~ (2)
PCS accessibility 0.33 0.25 0.00 0.98
Charging distance The distance between home location and the -
Z3 (from home to PCS) charging station they visited (km) 0.95 042 230 161
Ty Distance to urban center LLO dIS.F.a ncg ST EENEECN ez (e (el 2.73 0.66 0.44 443
and Beijing Tiananmen (km)
Ts GDP 1km gridded raster data through spatial zonal 158 0.10 0.00 072

statistics

Table 1 provides a comprehensive overview of the variables utilized in this study. The dependent variable is the EV penetration rate, defined as the ratio of EV residents to the total resident

population in each parcel. The independent variables are categorized into five groups:

1. &1 (Urban Development): building coverage ratio, employment density, and land use mix.

. '3 (Charging Accessibility): distance to public charging stations.

. &4 (Location): distance to the urban center (reflecting EV owners’ home location).

[SLEF VI N

GIS-Based Mapping and GBDT Model

We employed the kernel density estimation (KDE)
method in ArcGIS, using the parcel as the spatial
analysis unit, to visualize the selected variables. KDE,
a common spatial analysis technique, generates

a smooth density surface from point features by
estimating feature intensity as density.

These visualizations help illustrate the spatial patterns
and characteristics of different variables across
urban areas, accounting for distance decay effects.

. L5 (Economic Vitality): gridded GDP data reflecting economic vitality across urban space.

. &2 (Public Transport): density of bus stops, accessibility to metro stations, and accessibility to public charging stations.

Additionally, bivariate categorical mapping was used
to depict the distribution of EV residents in relation
to resident population and metro accessibility.
Visual interpretation of these maps allows for the
initial discernment of spatial associations between
independent and dependent variables.

Furthermore, we employed the Gradient Boost
Decision Tree (GBDT) method to analyze the nonlinear
associations between EV penetration rates and built
environment attributes near EV users’ home locations.
GBDT is well-suited for handling heterogeneous data
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(e.g., features on different scales) and automatically
detects nonlinear feature interactions, offering
advantages over other machine learning models for
diverse challenges.

In this study, the Gradient Boost Decision Tree (GBDT)
model uses Yy as the dependent or predicted variable
(EV penetration rate per urban parcel) and « as the
independent variables (built environment variables

T1 ~ Tg categorized into four groups). The dataset
was split into 80% for training and 20% for testing.

The algorithm aims to learn a predicted expected
function f(z) as a linear combination of N additive
decision trees 25:1 anB(z,0,) by minimizing

a specific loss function L(y, f(z)) (in this case, a
Gaussian loss function, generally used for continuous
dependent variables). Here, IN represents the number
of trees, and &, and 0, are the weight and parameter
set of the n-th tree B(z,0,,), respectively.

Findings from Geospatial Analysis

Figure lillustrates the kernel density mapping of

EV penetration rates and other variables relevant to

EV residential patterns. Figure 1(a) shows that high
concentrations of EV residents are located in specific
zones between the fourth and fifth ring roads, rather
than in the urban center (within the second or third ring
road) or the far suburbs (outside the sixth ring road).

Notably, EV resident density doesn’t show a clear
linear correlation with distance to the urban center,
suggesting a nonlinear relationship with urbanized
space in these areas. The bivariate map in Figure

2 reveals a consistent distribution of EV and total
residents in the yellow parcels, with high densities for
both observed between the fourth and fifth ring roads,
particularly in the north.

Blue parcels indicate a relatively higher EV resident
density, while red parcels show a comparatively
lower density. Southwestern and northeastern areas,
especially beyond the sixth ring road, have a smaller
proportion of EV users. This spatially adjacent but
differentially distributed pattern suggests a potential

relationship between EV resident locations and
surrounding built environment variables, such as metro
accessibility (Figure 2b).

Interestingly, high metro accessibility is concentrated
within the fourth ring road, extending north and south.
However, a relatively high proportion of EV residents
persists in suburban areas (between the fourth and
fifth ring roads) despite low metro accessibility,
indicating EVs’ potential as mobility alternatives in
areas with limited metro access.

Findings from the GBDT Model

Relative Significance of Explanatory Variables

Table 2 presents the importance and ranking of
selected explanatory variables for EV penetration
rates. Employment density emerged as the most
critical factor, accounting for nearly 65% of the
explanatory power. This indicates a significant
impact of employment distribution on EV adoption.
The proportion of building areas was the second
most important variable, with a relative contribution
of 11.6%.

This influence is logical, considering the
infrastructure requirements for EVs, particularly
when retrofitting existing buildings. The proportion
of building areas reflects both parcel development
and building occupancy.

The impact of public transportation density and
subway station accessibility was relatively minor, with
public transportation density being more influential.
This suggests that private EVs often serve as a
supplement in areas with insufficient public transit.
Distance to public charging stations from residences
ranked fourth, indicating some individuals’ potential
reliance on public charging.

While the accessibility of public charging stations
also had a relatively small impact, it suggests a
potential mismatch between supply and demand,
as discussed in previous studies (Kang et al. 2022).
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Figure 1: Mapping of Variables Using a GIS

(a) Density Map of EV Penetration Rate

(b) Employment Population Density Map (c) Bus Station Density Map
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(d) Density of Public Charging Station (PCS)
Accessibility Index

(e) Density Map of Service Capacity and
Convenience Based On Each Parcel
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Figure 2: Bivariate Mapping, lllustrating Distributions of High—High, High—Low, Low—High, and Low—Low Areas

(a) EV Residents vs. Total Residents (b) EV Residents vs. Metro Accessibilty Index
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Table 2: Relative Contributions of Explanatory Variables on the EV Penetration Rate

Explanatory Variable Category Rank Importance (%)
Employment density 1 60.0
Land use mix &1: urban development 4 4.6
Building coverage ratio 2 12.0
Density of bus stop 3 5.0
I 9: public transport
Metro accessibility 9 2.3
PCS accessibility 7 3.9
& 3: charging behavior

Charging distance 5 45
Distance to urban center T 4: deurbanization 8 3.4

GDP &5: economic factor 6 43
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These studies highlight that most charging stations in
Beijing are currently located in commercial areas, with
less deployment in residential areas, particularly in
the suburbs.

GDP (representing economic activity), land use

mix (representing surrounding convenience), and
distance from the city center (representing de-
urbanization) showed relatively lower effects on the
EV penetration rate.

Nonlinear Impacts of Explanatory Variables

Figure 3illustrates that most built-environment

factors exhibit nonlinear and threshold effects on

EV penetration rates. The interpretation of these
results is presented in four aspects. Regarding the
relationship between EV penetration rates and
economically related variables in Figure 3(a)—(d), we
examined changes in EV penetration with increasing (a)
employment density, (b) proportion of built area, (c)
GDP, and (d) land-use mix.

Generally, employment density, the proportion of built
areas, and GDP show a negative correlation with EV
penetration rates. From an economic standpoint, this
suggests that developing regions within the city are
more likely to favor EVs, aligning with previous studies
(Chen et al. 2008; Ding and Cao 2019) indicating that
employment density negatively impacts conventional
vehicle ownership, a trend also observed for EVs.

Empirically, better workplace accessibility from home
may reduce car dependence—while high employment
density is often associated with high GDP and well-
developed public transport. A high proportion of built
areas suggests limited available space, indicating

that EV users may be more inclined to reside in areas
with lower building density, such as suburbs or new
developments. Land-use mix has a positive effect on
EV penetration rates, exhibiting significant threshold
effects: arelatively flat trend between 0.025 and 0.71,
followed by a sharp increase peaking around 0.73.

Public charging station (PCS) accessibility and charging
distance exhibit significant nonlinear (generally
positive) effects on EV penetration rates, as shown

in Figures 3(e) and (f). The relationship varies across
the entire range of these charging-related variables,
displaying threshold effects.

For charging distance (logarithm), there’s almost

no effect below 0.39, but it sharply increases and
peaks around 0.4 (corresponding to 1.5 km). It then
decreases to a short plateau before increasing again
with peaks at 0.45 and 0.58. Between 0.61 and 1.3,

the effect is relatively steady, followed by another
peak at 1.4 (corresponding to 4.0 km). These peaks
suggest EV users prefer charging within 4 km of home,
and insufficient PCS deployment negatively impacts
EV adoption. The threshold effects highlight the
importance of appropriately deploying public charging
stations around residential neighborhoods (within a 1.5
km living circle, based on the initial peak) to increase
EV penetration rates.

Regarding the nonlinear and threshold effects of the
public transport system—metro accessibility and bus
stop density—the results generally showed positive
impacts on EV penetration rates. Specifically, when bus
stop density is below 0.000012 (stops/km?), the EV
penetration rate increases dramatically, reaching the
first peak at 0.000021 stops/km?.

As bus stop density reaches 0.000063 stops/km?,
the EV resident rate increases significantly again and
then remains steady between 0.000075 and 0.00025
stops/km?. The rate continues to increase and then
plateaus at 0.00032 stops/km?.

These findings have two implications for the
relationship between EV residential patterns and bus
stop density. First, in areas with low bus stop density,
residents likely rely on private vehicles, making EVs

a preferred mode. Second, EV users tend to reside

in areas with relatively high bus coverage (more than
0.00032 stops per square kilometer based on our
results). Therefore, when implementing public charging
stations to benefit EV residents, priority should be
given to areas with little to no bus coverage or very high
bus coverage.

Distance to the urban center was used to characterize
urban decentralization and explore if EV adoption
correlates with urban expansion. The nonlinear and
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threshold effects indicated that greater distance from
the city positively impacts EV penetration rates.

However, the favored distance peaks around 10 km
(log value 2.25 in Figure 3), aligning with the spatial
distribution in Figures 2—3, which corresponds to the

fourth ring road of Beijing. Beyond this peak, the impact
sharply decreases and remains low until 30 km (log
value 3.5), where another peak occurs. This suggests
some EV users live near the sixth ring road but with
significant spatial variation.

Figure 3: Non-Linear Effects of Explanatory Variables on EV Penetration Rate

(a) Employment Density (b) Proportion of Building Areas (c) GDP
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Notably, areas around the sixth ring road are at Beijing’s
urban periphery, following the ring road’s single-center
expansion, and are largely undeveloped with lower
residential density. This observation suggests that

the appeal of low-density housing may influence EV
prevalence, potentially leading to a more dispersed
settlement pattern.

Conclusion and Discussion

EV technology is driving a global transformation in
energy and transportation. While this trend is strong
and supported by favorable policies, EV penetration
rates still depend on various external factors.

This research uses geospatial analysis via a machine
learning Gradient Boost Decision Tree (GBDT) model
to investigate the nonlinear impacts of distinct
neighborhood built-environment variables on EV
penetration rates in Beijing. By analyzing observed
data from active EV users, the study establishes a
substantiated link between EV ownership and the
suburbanization of the city.

In Beijing, geospatial analysis indicates that EV users
generally prefer residing in areas balancing proximity
and density, with a notable concentration around a
10 km radius from the city center. The model reveals
negative effects of employment density, building
coverage ratio, and GDP on EV penetration rates,
while accessibility to public transportation and
public charging stations shows positive impacts.
These findings provide valuable insights into the
complex dynamics influencing EV adoption in

urban environments.

This local context justifies these nonlinear correlations.
The higher EV penetration rates observed outside
urban centers could be attributed to the greater

need for public charging near residents’ homes

in Beijing. The increase in EV ownership presents
challenges to the existing power system and requires
infrastructure updates.

Beijing’s historic center, with its low-rise, high-
density neighborhoods, narrow streets, and outdated

electrical infrastructure, faces difficulties and high
costs in retrofitting for EV facilities. Preserving
historic landmarks and Hutong neighborhoods further
complicates this. Even in newer high-rise residential
areas, a shortage of dedicated parking spaces creates
challenges, highlighting a significant reliance on

public charging stations as most residents lack home
charging access.

Regarding EVs’ impact on general urban structure
transformation, while debate continues on whether
they favor urban compaction or suburban expansion,
our geospatial data analysis suggests a slight but clear
advantage for electric mobility in suburban areas.

This manifests as a reciprocal relationship: suburban
residents tend to choose EVs for commuting, and
existing EV users tend to select suburban homes.

The preference for EVs in suburbs can be attributed
to lower operational costs, ideal for daily commutes
and medium-distance travel. Additionally, fewer public
transportation options in suburbs encourage personal
vehicle use.

Since Beijing’s EV incentives apply citywide, location
and amenities are key transport decision factors.

For example, lower building density in suburbs allows
for higher per capita charging facility capacity, and
future infrastructure expansion prospects are more
promising there.

Policy Implications

The study’s insights and identified thresholds for
Public Charging Stations (PCS) and distance to
urban centers have significant policy implications
for future urban planning and sustainability efforts.
The following recommendations are derived from
the study’s findings:

¢ Increase PCS density around residential areas.
Given the current concentration of PCS in urban centers,
we propose shifting the focus of PCS deployment
toward large-scale residential areas. Charging patterns
indicate that a 1.5 km (approximately 5-minutes driving
distance) radius is a crucial threshold, witnessing the
peak of charging activities. Applying this principle to
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future infrastructure planning could better serve both
existing and potential EV users, therefore balancing PCS
demand and supply.

¢ Prioritize middle-class neighborhoods. In Beijing,
PCS deployment should prioritize large residential
neighborhoods around the Fifth Ring Road, especially
focusing on areas approximately 10 km from urban
centers. This targeted approach ensures strategic
coverage in areas with higher concentrations of EV users,
contributing to a sustainable and accessible charging
infrastructure. Adding charging options closer to home
for middle-class residents should also alleviate pressure
oninfrastructure development in high-density inner-city
business zones.

¢ Integrate EV considerations into urban planning.
Understanding EV penetration rates and their correlation
with urban environmental variables is crucial for
informed decision-making. This information should
guide coordinated efforts in infrastructure development,
transit planning, community building, and street design.
Incorporating EV benefits, such as energy and carbon
reduction, into urban plans and design strategies can
optimize resources and enhance the overall urban
environment and lifestyle.

¢ Plan flexibly with evolving thresholds. This study
highlights the dynamic nature of EV penetration rates
and charging demands. The recommended threshold
ranges of 1.5 km and 10 m are based on current data but
may need adjustment as EV adoption evolves. Planning
strategies should remain flexible to accommodate
changing infrastructure needs.

In summary, these policy implications underscore the
importance of aligning urban planning with the evolving
EV landscape to ensure sustainable infrastructure
development and enhance overall urban quality of life.
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