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Introduction

The number of electric vehicles (EV) on the road has 
been growing rapidly, reaching more than 60 million 
worldwide. Nearly 13 million EVs were sold in China 
alone, which is the world’s largest EV market. This 
exponential growth results both from the advancement 
of technologies, such as batteries, and from the 
generous incentives implemented by governments 
around the world. However, in many markets, issues 
have also emerged as cities are struggling to integrate 
EVs into their spatial and infrastructure planning.

Despite ambitious zero-emission targets, EV 
penetration remains a small portion of global 
transportation. Integrating EVs into urban 
environments, particularly assessing their impact on 
existing systems, is largely unexplored and uncertain. 
Rising EV adoption is also creating new costs and 
potential resource waste due to oversupply, especially 
in urban centers (Kang et al. 2022). 

In typical Chinese urban centers, the average utilization 
rate of public charging infrastructure is below 13% 
(China Academy of Urban Planning and Design 
2023). Cities often prioritize deploying numerous 
public charging stations in commercial areas, parks, 
transportation hubs, and other public spaces. However, 
many of these locations face oversupply and reduced 
service efficiency.

Furthermore, the link between increasing EV adoption 
and evolving urban spatial structures remains under-
researched. This gap may lead to reduced investment 
returns and missed opportunities for sustainable 
planning. To improve infrastructure efficiency and 
resilience, planners must carefully consider integrating 
EV systems with the existing urban framework. 

While the significant influence of growing EV 
penetration on future city structures is acknowledged, 
the details of this transformation are unclear. A critical 
need exists to explore the relationships between rising 
EV adoption and urban expansion patterns, including 
changes in land use dynamics and the interaction 
between EVs and public transportation.

To address these challenges, this study investigates 
the non-linear relationship between EV penetration 
rates and key aspects of the built environment. Utilizing 
multi-source geospatial big data, including anonymized 
residential data of EV users and charging request 
data from location-based services (LBS), we employ 
geospatial analytics and machine learning models. 

First, GIS-based spatial analytics are used to visualize 
the residential patterns of EV users in relation to 
built-environment variables: land use mix, building 
coverage ratio, accessibility to public charging and 
transit, employment density, and local economic 
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productivity (GDP). Subsequently, a machine learning 
model assesses the non-linear correlations between 
residential EV penetration rates and these built-
environment variables.

Case Study and Data Source 

This investigation centers on two key questions: how 
to quantify and assess the interaction between EV 
penetration and the evolving built environment in urban 
research, and how to inform EV proliferation in urban 
planning and governance. Beijing serves as the primary 
case study. As a global leader in EV promotion, Beijing 
incentivizes EV ownership through direct subsidies 
and exemptions from gasoline car restrictions. By 
2022, over 600,000 EVs were registered in Beijing. This 
rapid EV growth is reshaping Beijing’s urban layout and 
influencing infrastructure strategies.

Beijing’s centripetal urban structure, defined by its 
ring road system, intricately interacts with the spatial 
distribution of population densities, shaped by 
historical and economic forces. The increasing number 
of EVs and their supporting infrastructure are now 
integral to this dynamic, actively influencing the city’s 
ongoing development. As EVs become a dominant 
feature of Beijing’s transportation, understanding their 
reciprocal effects on urban spatial transformation is 
crucial for future infrastructure decisions and urban 
governance strategies.

The datasets for this study originate from various 
channels. The principal spatial unit of analysis is the 
urban parcel, representing built-up areas and serving 
as the foundational unit for spatial analysis and 
modeling (Gong et al. 2020).

We compiled 24,778 EV charging records (from public 
stations in November 2019), and EV owner home 
locations were derived from location-based services 
(LBS) data sourced from Baidu Maps, China’s leading 
mobile map service. After data cleaning, the final 
dataset used for analysis and modeling comprised 
2,970 parcels with 20,387 active EV residents (engaging 
in public charging). EV users were aggregated to urban 
parcels and spatially integrated with other variables 
using ArcGIS Pro.

Euclidean distance is used as the distance metric. 
Gridded GDP data is sourced from remote sensing-
calibrated nighttime light data (Chen et al. 2022). 
Accessibility to metro and public charging stations 
is gauged by public transportation service capabilities. 
Population and employment densities are derived 
from Baidu heat map big data, a validated source 
(Fang et al. 2020).

Densities of public transportation services (metro 
stations, bus stops, public charging stations) 
and surrounding amenities (land use categories) 
are measured using point of interest (POI) data. 
The service capacity and convenience of these 
amenities are calculated using the land use mix 
entropy approach, considering supermarkets, 
commercial buildings, primary and middle schools, 
universities, hospitals, and entertainment venues. 
The formula reads:

(1)

Here,  represents the ratio of each surrounding 
amenity category within each parcel, and  is the 
total number of amenity categories, which is six in 
this study.

Accessibility was calculated using the cumulative 
opportunity method to evaluate spatial separation 
effects (Xiao et al. 2017).

(2)

 
Here,  represents the accessibility index, 
summarizing the service capacity and convenience 
of surrounding amenities for residents in each parcel. 
The term  denotes the Euclidean distance from the 
center of parcel  to amenity . The threshold distance, 

, is set at 1.5 km, a value commonly used in studies as 
a walkable distance for typical daily life circles.
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GIS-Based Mapping and GBDT Model

We employed the kernel density estimation (KDE) 
method in ArcGIS, using the parcel as the spatial 
analysis unit, to visualize the selected variables. KDE, 
a common spatial analysis technique, generates 
a smooth density surface from point features by 
estimating feature intensity as density. 

These visualizations help illustrate the spatial patterns 
and characteristics of different variables across 
urban areas, accounting for distance decay effects. 

Additionally, bivariate categorical mapping was used 
to depict the distribution of EV residents in relation 
to resident population and metro accessibility. 
Visual interpretation of these maps allows for the 
initial discernment of spatial associations between 
independent and dependent variables. 

Furthermore, we employed the Gradient Boost 
Decision Tree (GBDT) method to analyze the nonlinear 
associations between EV penetration rates and built 
environment attributes near EV users’ home locations. 
GBDT is well-suited for handling heterogeneous data 

Table 1: Overview of Variables and Descriptions

Variable Denotation Description Mean SD Min Max

EV resident rate  (each parcel) 0.16 0.27 0.00 2.00 

Employment density
Working population density of each parcel 
(counts/km2)

7.01 1.48 0.00 11.15 

Surrounding amenities/ 
Land use mix

To measure the service capacity and convenience 
of each parcel

0.18 0.32 0.00 2.40

The proportion of 
building areas

The ratio of total building areas and parcel areas 
(range between 0 and 1) 

0.20 0.10 0.00 0.72

Density of bus station The density of bus stops from POI (counts/km2) 0.00 0.00 0.00 0.02

Metro accessibility
To measure public transport service capability, 
based on formula 

1.39 1.93 0.00 12.37

PCS accessibility 0.33 0.25 0.00 0.98

Charging distance 
(from home to PCS)

The distance between home location and the 
charging station they visited (km)

0.95 0.42 -2.30 1.61

Distance to urban center
The distance between each parcel (center point) 
and Beijing Tiananmen (km)

2.73 0.66 0.44 4.43

GDP
1 km gridded raster data through spatial zonal 
statistics

1.58 0.10 0.00 0.72

Table 1 provides a comprehensive overview of the variables utilized in this study. The dependent variable is the EV penetration rate, defined as the ratio of EV residents to the total resident 
population in each parcel. The independent variables are categorized into five groups:

1.	  (Urban Development): building coverage ratio, employment density, and land use mix. 

2.	  (Public Transport): density of bus stops, accessibility to metro stations, and accessibility to public charging stations. 

3.	   (Charging Accessibility): distance to public charging stations. 

4.	   (Location): distance to the urban center (reflecting EV owners’ home location).

5.	   (Economic Vitality): gridded GDP data reflecting economic vitality across urban space.
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(e.g., features on different scales) and automatically 
detects nonlinear feature interactions, offering 
advantages over other machine learning models for 
diverse challenges.

In this study, the Gradient Boost Decision Tree (GBDT) 
model uses  as the dependent or predicted variable 
(EV penetration rate per urban parcel) and  as the 
independent variables (built environment variables 

 categorized into four groups). The dataset 
was split into 80% for training and 20% for testing.

The algorithm aims to learn a predicted expected 
function  as a linear combination of  additive 
decision trees   by minimizing 
a specific loss function  (in this case, a 
Gaussian loss function, generally used for continuous 
dependent variables). Here,  represents the number 
of trees, and  and  are the weight and parameter 
set of the n-th tree , respectively.

Findings from Geospatial Analysis

Figure 1 illustrates the kernel density mapping of 
EV penetration rates and other variables relevant to 
EV residential patterns. Figure 1(a) shows that high 
concentrations of EV residents are located in specific 
zones between the fourth and fifth ring roads, rather 
than in the urban center (within the second or third ring 
road) or the far suburbs (outside the sixth ring road).

Notably, EV resident density doesn’t show a clear 
linear correlation with distance to the urban center, 
suggesting a nonlinear relationship with urbanized 
space in these areas. The bivariate map in Figure 
2 reveals a consistent distribution of EV and total 
residents in the yellow parcels, with high densities for 
both observed between the fourth and fifth ring roads, 
particularly in the north.

Blue parcels indicate a relatively higher EV resident 
density, while red parcels show a comparatively 
lower density. Southwestern and northeastern areas, 
especially beyond the sixth ring road, have a smaller 
proportion of EV users. This spatially adjacent but 
differentially distributed pattern suggests a potential 

relationship between EV resident locations and 
surrounding built environment variables, such as metro 
accessibility (Figure 2b).

Interestingly, high metro accessibility is concentrated 
within the fourth ring road, extending north and south. 
However, a relatively high proportion of EV residents 
persists in suburban areas (between the fourth and 
fifth ring roads) despite low metro accessibility, 
indicating EVs’ potential as mobility alternatives in 
areas with limited metro access.

Findings from the GBDT Model

Relative Significance of Explanatory Variables

Table 2 presents the importance and ranking of 
selected explanatory variables for EV penetration 
rates. Employment density emerged as the most 
critical factor, accounting for nearly 65% of the 
explanatory power. This indicates a significant 
impact of employment distribution on EV adoption. 
The proportion of building areas was the second 
most important variable, with a relative contribution 
of 11.6%.

This influence is logical, considering the 
infrastructure requirements for EVs, particularly 
when retrofitting existing buildings. The proportion 
of building areas reflects both parcel development 
and building occupancy.

The impact of public transportation density and 
subway station accessibility was relatively minor, with 
public transportation density being more influential. 
This suggests that private EVs often serve as a 
supplement in areas with insufficient public transit. 
Distance to public charging stations from residences 
ranked fourth, indicating some individuals’ potential 
reliance on public charging.

While the accessibility of public charging stations 
also had a relatively small impact, it suggests a 
potential mismatch between supply and demand, 
as discussed in previous studies (Kang et al. 2022). 
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Figure 1: Mapping of Variables Using a GIS
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Figure 2: Bivariate Mapping, Illustrating Distributions of High–High, High–Low, Low–High, and Low–Low Areas

Table 2: Relative Contributions of Explanatory Variables on the EV Penetration Rate

Explanatory Variable Category Rank Importance (%)

Employment density 

: urban development

1 60.0

Land use mix 4 4.6

Building coverage ratio 2 12.0

Density of bus stop 

: public transport

3 5.0

Metro accessibility 9 2.3

PCS accessibility

: charging behavior

7 3.9

Charging distance 5 4.5

Distance to urban center : deurbanization 8 3.4

GDP : economic factor 6 4.3
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These studies highlight that most charging stations in 
Beijing are currently located in commercial areas, with 
less deployment in residential areas, particularly in 
the suburbs.

GDP (representing economic activity), land use 
mix (representing surrounding convenience), and 
distance from the city center (representing de-
urbanization) showed relatively lower effects on the 
EV penetration rate.

Nonlinear Impacts of Explanatory Variables 

Figure 3 illustrates that most built-environment 
factors exhibit nonlinear and threshold effects on 
EV penetration rates. The interpretation of these 
results is presented in four aspects. Regarding the 
relationship between EV penetration rates and 
economically related variables in Figure 3(a)–(d), we 
examined changes in EV penetration with increasing (a) 
employment density, (b) proportion of built area, (c) 
GDP, and (d) land-use mix.

Generally, employment density, the proportion of built 
areas, and GDP show a negative correlation with EV 
penetration rates. From an economic standpoint, this 
suggests that developing regions within the city are 
more likely to favor EVs, aligning with previous studies 
(Chen et al. 2008; Ding and Cao 2019) indicating that 
employment density negatively impacts conventional 
vehicle ownership, a trend also observed for EVs.

Empirically, better workplace accessibility from home 
may reduce car dependence—while high employment 
density is often associated with high GDP and well-
developed public transport. A high proportion of built 
areas suggests limited available space, indicating 
that EV users may be more inclined to reside in areas 
with lower building density, such as suburbs or new 
developments. Land-use mix has a positive effect on 
EV penetration rates, exhibiting significant threshold 
effects: a relatively flat trend between 0.025 and 0.71, 
followed by a sharp increase peaking around 0.73.

Public charging station (PCS) accessibility and charging 
distance exhibit significant nonlinear (generally 
positive) effects on EV penetration rates, as shown 

in Figures 3(e) and (f). The relationship varies across 
the entire range of these charging-related variables, 
displaying threshold effects.

For charging distance (logarithm), there’s almost 
no effect below 0.39, but it sharply increases and 
peaks around 0.4 (corresponding to 1.5 km). It then 
decreases to a short plateau before increasing again 
with peaks at 0.45 and 0.58. Between 0.61 and 1.3, 
the effect is relatively steady, followed by another 
peak at 1.4 (corresponding to 4.0 km). These peaks 
suggest EV users prefer charging within 4 km of home, 
and insufficient PCS deployment negatively impacts 
EV adoption. The threshold effects highlight the 
importance of appropriately deploying public charging 
stations around residential neighborhoods (within a 1.5 
km living circle, based on the initial peak) to increase 
EV penetration rates.

Regarding the nonlinear and threshold effects of the 
public transport system—metro accessibility and bus 
stop density—the results generally showed positive 
impacts on EV penetration rates. Specifically, when bus 
stop density is below 0.000012 (stops/km2), the EV 
penetration rate increases dramatically, reaching the 
first peak at 0.000021 stops/km2.

As bus stop density reaches 0.000063 stops/km2, 
the EV resident rate increases significantly again and 
then remains steady between 0.000075 and 0.00025 
stops/km2. The rate continues to increase and then 
plateaus at 0.00032 stops/km2.

These findings have two implications for the 
relationship between EV residential patterns and bus 
stop density. First, in areas with low bus stop density, 
residents likely rely on private vehicles, making EVs 
a preferred mode. Second, EV users tend to reside 
in areas with relatively high bus coverage (more than 
0.00032 stops per square kilometer based on our 
results). Therefore, when implementing public charging 
stations to benefit EV residents, priority should be 
given to areas with little to no bus coverage or very high 
bus coverage.

Distance to the urban center was used to characterize 
urban decentralization and explore if EV adoption 
correlates with urban expansion. The nonlinear and 
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threshold effects indicated that greater distance from 
the city positively impacts EV penetration rates.

However, the favored distance peaks around 10 km 
(log value 2.25 in Figure 3), aligning with the spatial 
distribution in Figures 2–3, which corresponds to the 

fourth ring road of Beijing. Beyond this peak, the impact 
sharply decreases and remains low until 30 km (log 
value 3.5), where another peak occurs. This suggests 
some EV users live near the sixth ring road but with 
significant spatial variation.

Figure 3: Non-Linear Effects of Explanatory Variables on EV Penetration Rate
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Notably, areas around the sixth ring road are at Beijing’s 
urban periphery, following the ring road’s single-center 
expansion, and are largely undeveloped with lower 
residential density. This observation suggests that 
the appeal of low-density housing may influence EV 
prevalence, potentially leading to a more dispersed 
settlement pattern.

Conclusion and Discussion

EV technology is driving a global transformation in 
energy and transportation. While this trend is strong 
and supported by favorable policies, EV penetration 
rates still depend on various external factors.

This research uses geospatial analysis via a machine 
learning Gradient Boost Decision Tree (GBDT) model 
to investigate the nonlinear impacts of distinct 
neighborhood built-environment variables on EV 
penetration rates in Beijing. By analyzing observed 
data from active EV users, the study establishes a 
substantiated link between EV ownership and the 
suburbanization of the city.

In Beijing, geospatial analysis indicates that EV users 
generally prefer residing in areas balancing proximity 
and density, with a notable concentration around a 
10 km radius from the city center. The model reveals 
negative effects of employment density, building 
coverage ratio, and GDP on EV penetration rates, 
while accessibility to public transportation and 
public charging stations shows positive impacts. 
These findings provide valuable insights into the 
complex dynamics influencing EV adoption in 
urban environments.

This local context justifies these nonlinear correlations. 
The higher EV penetration rates observed outside 
urban centers could be attributed to the greater 
need for public charging near residents’ homes 
in Beijing. The increase in EV ownership presents 
challenges to the existing power system and requires 
infrastructure updates.

Beijing’s historic center, with its low-rise, high-
density neighborhoods, narrow streets, and outdated 

electrical infrastructure, faces difficulties and high 
costs in retrofitting for EV facilities. Preserving 
historic landmarks and Hutong neighborhoods further 
complicates this. Even in newer high-rise residential 
areas, a shortage of dedicated parking spaces creates 
challenges, highlighting a significant reliance on 
public charging stations as most residents lack home 
charging access.

Regarding EVs’ impact on general urban structure 
transformation, while debate continues on whether 
they favor urban compaction or suburban expansion, 
our geospatial data analysis suggests a slight but clear 
advantage for electric mobility in suburban areas. 
This manifests as a reciprocal relationship: suburban 
residents tend to choose EVs for commuting, and 
existing EV users tend to select suburban homes.

The preference for EVs in suburbs can be attributed 
to lower operational costs, ideal for daily commutes 
and medium-distance travel. Additionally, fewer public 
transportation options in suburbs encourage personal 
vehicle use.

Since Beijing’s EV incentives apply citywide, location 
and amenities are key transport decision factors. 
For example, lower building density in suburbs allows 
for higher per capita charging facility capacity, and 
future infrastructure expansion prospects are more 
promising there.

Policy Implications

The study’s insights and identified thresholds for 
Public Charging Stations (PCS) and distance to 
urban centers have significant policy implications 
for future urban planning and sustainability efforts. 
The following recommendations are derived from 
the study’s findings:

•	 Increase PCS density around residential areas. 
Given the current concentration of PCS in urban centers, 
we propose shifting the focus of PCS deployment 
toward large-scale residential areas. Charging patterns 
indicate that a 1.5 km (approximately 5-minutes driving 
distance) radius is a crucial threshold, witnessing the 
peak of charging activities. Applying this principle to 
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future infrastructure planning could better serve both 
existing and potential EV users, therefore balancing PCS 
demand and supply.

•	 Prioritize middle-class neighborhoods. In Beijing, 
PCS deployment should prioritize large residential 
neighborhoods around the Fifth Ring Road, especially 
focusing on areas approximately 10 km from urban 
centers. This targeted approach ensures strategic 
coverage in areas with higher concentrations of EV users, 
contributing to a sustainable and accessible charging 
infrastructure. Adding charging options closer to home 
for middle-class residents should also alleviate pressure 
on infrastructure development in high-density inner-city 
business zones.

•	 Integrate EV considerations into urban planning. 
Understanding EV penetration rates and their correlation 
with urban environmental variables is crucial for 
informed decision-making. This information should 
guide coordinated efforts in infrastructure development, 
transit planning, community building, and street design. 
Incorporating EV benefits, such as energy and carbon 
reduction, into urban plans and design strategies can 
optimize resources and enhance the overall urban 
environment and lifestyle.

•	 Plan flexibly with evolving thresholds. This study 
highlights the dynamic nature of EV penetration rates 
and charging demands. The recommended threshold 
ranges of 1.5 km and 10 m are based on current data but 
may need adjustment as EV adoption evolves. Planning 
strategies should remain flexible to accommodate 
changing infrastructure needs.

In summary, these policy implications underscore the 
importance of aligning urban planning with the evolving 
EV landscape to ensure sustainable infrastructure 
development and enhance overall urban quality of life.
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