## **Real Reliability** The Value of Virtual Power

PRESENTED BY Ryan Hledik

KLEINMAN CENTER FOR ENERGY POLICY UNIVERSITY OF PENNSYLVANIA OCTOBER 15, 2024



## U.S. Generation Capacity: Supply and Demand



## What Is a VPP?

A VPP is portfolio of distributed energy resources (DERs) that are actively controlled to provide benefits to the power system, consumers, and the environment.



## **Innovative example of a VPP**



#### The Program

- Customer leases battery from utility at a discount
- Under limited conditions, utility operates battery to manage power system
- 1% participation currently; targeting 4-8% by 2030

#### **Customer benefits**

- Discounted battery
- No up-front payment
- No outages
- Bill savings
- Additional discounts for low-income customers

#### **Utility benefits**

- Sharing cost of battery with customer
- Ownership of grid asset
- Improved customer satisfaction
- Reduced distribution system costs
- Avoided transmission payments

## VPPs are at a deployment inflection point

### Drivers

- Declining DER costs
- Technological advancement
- Policy incentives
- Wholesale market reform
- Growing model availability
- The decarbonization imperative

| Homes with Sma | art Thermostats | Homes with Elect | tric Water Heating |
|----------------|-----------------|------------------|--------------------|
| PRESENT        | 2030            | PRESENT          | 2030               |
| 10%            | 34%             | 49%              | 50%                |
| Residential R  | ooftop Solar    | Behind-the-Mete  | er (BTM) Batteries |
| PRESENT        | 2030            | PRESENT          | 2030               |
| 27 GW          | 83 GW           | 2 GW             | 27 GW              |
| Light-Duty Ele | ctric Vehicles  | Data Center On   | -Site Generation   |
| PRESENT        | 2030            | PRESENT          | 2030               |
| 3 mil.         | 26 mil.         | N/A              | 50 GW?             |

Note: Estimates are for US, based on review of various industry analyst projections.

## We conducted hourly reliability analysis for a residential VPP

The modeled VPP could fully provide 400 MW of resource adequacy for a mid-sized utility (1.7 million customers) with 50% renewable generation



Peak Net Load Day

## VPP dispatch simulations are based on observed performance



3

4

- Limits on customer tolerance for number of interruptions
- Load impacts limited to actual available load during system peak hours
  - Load impacts account for event opt-outs, remain within customer tolerance range
  - Pre- and post-event load building to ensure customer usage ability
- 5
- Dispatch is simulated to maximize avoided power system costs, in addition to providing resource adequacy

#### EV Home Charging Load Profile Relative to Hourly System Costs





## **Resource adequacy... for cheap**

VPP capacity is only 40-60% of the cost of alternatives, plus societal benefits

**Utility-Scale Battery** Gas Peaker VPP \$2022 million/yr \$80 Emissions \$70 Distribution \$60 \$50 Transmission \$43M \$40 **Ancillary Services** \$29M \$30 Energy \$20 CapEx, Fuel, O&M, Program Costs \$10 \$2M \$-Costs Benefits Net Costs **Benefits** Net Costs Benefits Net Costs Costs Costs

#### Annualized Net Cost of Providing 400 MW of Resource Adequacy

## Resource adequacy at a *negative* net cost to society?

Net Cost of Providing 400 MW of Resource Adequacy (Range observed across all sensitivity cases)



Economic competitiveness of battery storage and VPPs varies across markets, depends trajectory of future cost declines.

In markets with higher T&D costs or higher GHG emissions costs, the additional (i.e., non-resource adequacy) value of a VPP can outweigh its costs

## **VPPs can provide additional critical benefits**

|                                       | Supply-centric approach                                                                           | VPP approach                                                     |
|---------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Resource<br>levelopment<br>imeline    | Transmission-connected resources<br>constrained by 4-8 year interconnection<br>approval process   | Can be "built" as quickly<br>as customers enroll                 |
| Resource<br>levelopment<br>lexibility | Investments in traditional capacity are<br>a 20-40 year commitment once steel is<br>in the ground | Can scale as demand grows,<br>and downsize if needed             |
| Resilience                            | Large, centralized resources are vulnerable to attacks and consequential outages                  | Provides resource diversity<br>and on-site backup during outages |
|                                       |                                                                                                   |                                                                  |

## The economic value of resilience



Photo credit: Travis Kavulla

## The ideal conditions for VPP deployment

#### **MARKET DESIGN**

- Wholesale markets provide a level playing field for demand-side resources.
- Retail rates and programs incentivize participation in innovative, customer-centric ways.

#### **TECHNOLOGY INNOVATION**

- DERs are widely available and affordable. DERs can communicate with each other and the system operator.
- Algorithms effectively optimize DER use while maintaining customer comfort and convenience.



#### **POLICY SUPPORT**

- Codes and standards promote deployment of flexible end-uses.
- R&D funding supports removal of key technical barriers.

#### **REGULATORY FRAMEWORK**

- Utility business model incentivizes deployment of VPPs wherever cost-effective.
- Utility resource planning and evaluation accounts for the full value of VPPs.

## Three low-risk actions utilities and regulators can take now

- Conduct a jurisdiction-specific VPP market potential study. Then establish VPP procurement targets.
- 2. Establish a VPP pilot. Test innovative utility financial incentive mechanisms.
- 3. Review and update existing policies to comprehensively account for VPP value.

### For more information:



https://www.brattle.com/real-reliability/



## Appendix

## VPPs can provide several additional major benefits not modeled in this study













Improved behind-themeter grid intelligence

## **Estimating Additional Market Value**

The distributed nature of VPPs allows them to provide a broader range of system benefits than transmission-connected alternatives.

| System Impact           | Description                                                                                                                                       | Gas<br>Peaker | Utility-Scale<br>Battery | VPP           |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------|---------------|
| Energy                  | Net change in system fuel and variable O&M costs due to the addition of the new resource.                                                         | +             | +                        | +             |
| Ancillary Services      | Value associated with operating the resource to provide real-<br>time balancing services to the grid.                                             | +             | +                        | +             |
| Emissions               | Net change in greenhouse gas (GHG) emissions due to the addition of the resource, valued at a social cost of carbon estimate of \$100/metric ton. | -             | -                        | +             |
| T&D Investment Deferral | Deferred cost of investing in the transmission and distribution grid due to strategic siting of distributed resources.                            | N/A           | N/A                      | +             |
| Resilience              | Avoided distribution outage associated with using DERs as backup generation.                                                                      | N/A           | N/A                      | +             |
| Note:                   | " refers to transmission connected lithium ion bottories                                                                                          |               | = system benefit         | = system cost |

Throughout the presentation, "utility-scale battery" refers to transmission-connected lithium-ion batteries.

**Brattle** 

## We modeled a VPP composed of four commercially available residential load flexibility technologies

|                                                        | Smart Thermostat<br>DR                                                                                          | Smart Water<br>Heating                                        | Home Managed<br>EV Charging                  | BTM Battery<br>DR                     |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------|---------------------------------------|
| <b>Eligibility</b><br>(% of residential customer base) | 67% summer;<br>35% winter                                                                                       | 50%                                                           | 15%                                          | 1%                                    |
| <b>Participation</b><br>(% of eligible customers)      | 30%                                                                                                             | 30%                                                           | 40%                                          | 20%                                   |
| Total Controllable Demand at Peak (MW)                 | 204 MW                                                                                                          | 114 MW                                                        | 79 MW                                        | 26 MW                                 |
| VPP Operational Constraints                            | 15 five-hour events per<br>season, plus 100 hrs of minor<br>setpoint adjustments per year<br>and energy savings | Daily load shifting of water heating load, ancillary services | Daily load shifting of vehicle charging load | 15 demand response<br>events per year |

We model all utility-incurred costs (incentives, implementation including marketing and per-unit DERMS costs)

## **Overcoming Barriers to VPP Deployment**

Barriers are preventing VPP potential from being realized. With work, they can be overcome.

|            | Key VPP Barriers                                                       | Possible Solutions                                                               | Examples                                                                                               |
|------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Technology | Lack of communications standards (between devices, with grid)          | Initiatives to create coordination and standardization among product developers  | The Connected Home over IP ( <u>CHIP</u> )<br>working group, <u>Matter</u> , the <u>VP3</u> initiative |
|            | Uncertain consumer DER adoption trajectory                             | R&D / implementation funding to improve products and reduce costs                | Inflation Reduction Act tax credits for DERs and <u>smart buildings</u>                                |
| Markets    | Prohibitive/complex wholesale market participation rules               | Market products that explicitly recognize VPP characteristics                    | ERCOT's 80 MW Aggregated DER ( <u>ADER</u> )<br>Pilot Program                                          |
|            | Retail rates and program design that do not incentivize DER management | Subscription pricing coupled with load flexibility offerings; time-varying rates | Duke Energy <u>pilot</u> coupling subscription pricing with thermostat management                      |
| Regulation | Utility regulatory model that does not financially incentivize VPPs    | Performance incentive mechanisms, shared savings models                          | At least <u>12 states</u> with utility financial incentives for demand reduction                       |
|            | Full value of VPPs not considered in policy/planning decisions         | Regulatory targets for VPP development                                           | Minnesota PUC 400 MW demand response expansion requirement                                             |

Note: For further discussion of barriers and solutions, see the U.S. DOE's <u>A National Roadmap for Grid-Interactive Efficient Buildings</u>.

## We conducted hourly reliability analysis for a VPP, a gas peaker, and a utility-scale battery

### The illustrative utility

- Mid-sized (1.7 million customers)
- 50% renewables by 2030
- Winter and summer resource adequacy needs

To provide resource adequacy, the VPP must be able to serve all load contributing to top 400 MW of net peak demand over the year



#### Utility Hourly Net Load Profile

## The future of VPPs?

## **"THE LINE"**









# Clarity in the face of complexity

