A Changing Risk Environment Requires Extraordinary Action
A Bulk Power System Reliability Perspective

John Moura, Director of Reliability Assessment and Performance Analysis
The Kleinman Center for Energy Policy: Wholesale Power Markets, Reliability, and the Energy Transition
November 8, 2023
Across an Interconnected System: Less Resources Means More Reliance on Neighbors

2012 and 2022 Peak Capacity Resource Mix NERC-Wide

NERC-Wide Summer Peak Demand Changes 2012 and 2022

2012 Summer Peak Demand

2022 Summer Peak Demand

2025 Risk Areas

4% Decrease

3% Increase
ERCOT, SPP, MISO: A “wind drought” caused 60 GW of installed wind capacity to generate 300 MW

PJM: Transmission system during extreme cold weather limited the ability to export to support southern neighbors
Hours Without Operator-Initiated Firm Load Shed (%/year)

- 2021
 - 10 EEA-3 Alerts
 - 1.015 GWh unserved energy
 - Occurred February
Significant levels of incremental unplanned electric generating unit losses with top causes found to be mechanical/electrical, freezing, and fuel issues.

Significant natural gas production decreases occurred, with some areas of the country more severely affected.

Short-range forecasts of peak electricity demands were less than actual demands for some BAs in event area.
Hyper Complex Risk Environment

Rapidly Changing Resource Mix
- Retirements of traditional generation
- Natural gas interdependencies
- Inverter-Based Resource (IBR) integration
- DER performance and visibility

Extreme Weather Complexities
- Extreme not infrequent
- Broader deeper longer

Energy & Environmental Policy
- Electrification
- Emissions
- Transmission

Rapidly Evolving Threat Landscape
- S/W vulnerabilities
- Supply chain
- Ransomware
- Physical attacks
Hyper Complex Risk Environment Results in Increased BPS Reliability Risk

Rapidly Changing Resource Mix
- Retirements of traditional generation
- Natural gas interdependencies
- Inverter-Based Resource (IBR) integration
- DER performance and visibility

Extreme Weather Complexities
- Extreme not infrequent
- Broader deeper longer

Energy & Environmental Policy
- Electrification
- Emissions
- Transmission

Rapidly Evolving Threat Landscape
- S/W vulnerabilities
- Supply chain
- Ransomware
- Physical attacks

Fuel assurance/uncertainties
- Natural gas
- Renewables

Loss of key “essential reliability services” with retirements
- Inertia/frequency response
- Reactive Power/voltage support
- Dispatchability

Appropriate level of investment in infrastructure for hardening & resilience
- Extreme weather
- Coordinated Physical attack
- Insufficient transfers

Expanding cyber attack surface
- Industry Control Systems (ICSs)
- IBRs/DERs/EV Charging

Sophistication of recent cyber attacks
- SolarWinds (one to many)
- Pipedream, Industroyer malware
Q&A -- Discussion
• 10-year Peak Demand and Energy growth showed largest increases in years
 ▪ Further increases from electrification and EV adoption are anticipated
• Peak demand growth is accelerating – Growth rate doubled in last two years
• Growth in some areas is affecting adequacy of reserves and seasonal energy risks
Managing the Pace of Generator Retirements

- Known generator retirements totaling over 110 GW
- New and proposed U.S. EPA regulations are expected to further accelerate retirements
- 2023 Long-Term Reliability Assessment will consider updated retirement information and scenarios for assessing future resource adequacy and reliability risks
Ontario
- Reserve Margins below target in 2025
- Planned retirements and nuclear work

MISO
- Reserve Margins below target in 2023
- 5,700 MW of thermal generation retirements since 2022

California-Mexico
- Load loss hours anticipated due to variable resource mix and demand
- Improving trend in metrics with recent capacity additions

U.S. West
- Unserved energy projections are increasing in summer months

New England
- Fuel risk in extended cold weather

ERCOT
- Energy risk shifts to winter due to potential impacts of extreme weather

SPP
- Energy shortfalls likely during low-wind and high demand periods
• **Executive Order N-79-20**: By 2035, 100 percent EV sales
• Charging millions of EVs will introduce significant new electric load
• By one estimate, up to 5,500 MW
• Early alignment and coordination needed

Projected 2030 Statewide PEV Charging Load for Intraregional Travel of 8 Million Light-Duty EVs

AB 2127 Report: https://www.energy.ca.gov/programs-and-topics/programs/electric-vehicle-charging-infrastructure-assessment-ab-2127
On-Peak Resource Mix Changes through 2032
Must Wins:

1. **Manage the pace of transformation** through market mechanisms and inter-agency coordination on policies that impact generation
2. Develop sufficient **transmission**, to integrate renewables and distribute them, make the system more resilient
3. Maintain a robust fleet of **balancing resources**, with an ability to provide **Essential Reliability Services**
4. Ensure a robust **energy supply chain** for the balancing resources, with sufficient access to fuel and stored energy to withstand long-duration, wide-spread extreme weather events
5. **STATES**: Refine resource adequacy requirements that preserves energy assurance
Different Generators Provide Different Services to the Grid

<table>
<thead>
<tr>
<th></th>
<th>Frequency Response</th>
<th>Voltage Control</th>
<th>Ramp Capability</th>
<th>Fuel Assurance</th>
<th>Flexibility</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Gas – CT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil – Steam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coal – Steam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil/Diesel – CT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demand Response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar + Battery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind On-Shore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind Off-Shore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Frequency Excursion – Interconnection-wide Phenomena

Florida Event Replay with FNET Data [2/26/2008]
Time: 18:09:6.1 UTC 60.0013 Hz

[Graph and Map of the United States with markers indicating frequency excursion]
Trend in Transmission Projects: Steady

- Little change in transmission miles projections in past five years
- Most projects are initiated to support grid reliability
- Miles of transmission being planned or constructed for renewable integration increased from 1,589 mi to 2,376 mi since 2021 LTRA

<table>
<thead>
<tr>
<th>Area</th>
<th>Miles</th>
<th>Area</th>
<th>Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>WECC WPP</td>
<td>3,439</td>
<td>SERC SE</td>
<td>629</td>
</tr>
<tr>
<td>NPCC New York</td>
<td>1,635</td>
<td>WECC SRSG</td>
<td>581</td>
</tr>
<tr>
<td>PJM</td>
<td>983</td>
<td>NPCC Ontario</td>
<td>570</td>
</tr>
<tr>
<td>WECC CAMX</td>
<td>902</td>
<td>NPCC New England</td>
<td>506</td>
</tr>
<tr>
<td>WECC BC</td>
<td>775</td>
<td>All other areas</td>
<td><500 mi each</td>
</tr>
</tbody>
</table>