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Recent Study from National Academy of Science

The National Acadentics of
SCIENCES - ENGINEERING - MEDICINE

CONSENSUS STUDY REPORT

Focus was on establishing a research agenda for

, . : NEGATIVE EMISSIONS
negative emissions technologies TECHNOLOGIES AND

RELIABLE SEQUESTRATION:

A Research Agenda

Major conclusion from the study:

“If the goals for climate and economic growth are to be
achieved, negative emissions technologies will likely need
to play a large role in mitigating climate change by
removing globally 10 GtCO,/yr by midcentury and 20
GtCO,/yr by century’s end.”

http://nas-sites.org/dels/studies/cdr/
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What is Direct Air Capture?

Using Chemicals to Remove CO, from the air

Pros:

* Has the potential to be an NET
* Method for dealing with difficult to avoid emissions
* Does not require arable land

Cons:

* Energy inputs are significant
* Land footprint is large

DAC should not replace avoiding CO,
emissions in the first place
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Closer Look at the Energy

* Minimum work for separation
may be derived from combined
1st and 2nd [aws of
thermodynamics

* Energy scales with dilution — 3x
more energy to do DAC vs
combustion exhaust

* 300x greater contactor area for
CO, separation to do DAC vs
combustion exhaust

* High purity is desired for
transport

Reference: Wilcox, Carbon Capture, 2012
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What Does Scrubbing CO, from a Point Source Look Like?
First patent filed by Bottoms in 1930!
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Direct Air Capture Contactor Looks Very Different
need 10 of these to capture 1 MtCO, per year




Today’s technologies are based on liquids or solid materials

containing CO,-grabbing chemicals

Solvents rely on structured packing with
solvent flow over the packing

Solid sorbents rely on a honey-comb structure
with chemicals (amines) bound to structure




To Design a DAC Plant, you First Need to Design a Power Plant

* No matter which approach you choose, the heat required to recycle the
material is dominant over the electricity required to drive the fans,

* To capture 1 MtCO,/yr from air requires 300-500 MW of power!

* Choosing which energy resource to fuel the DAC plant will dictate the
net CO, removed



Liquid Solvent DAC
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Solid Sorbent DAC
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Reference: Pacala et al., NASEM, 2019
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Eo drivczI cgsts down will require some technological advancement, but more will
e neede

Investing as a gkl)obal society is essential — whether through regulation or subsidies
or taxes on carbon.

In 1966 the US invested about 1/2% of gross domestic product in the Apollo
Program — today this is ~ $100 billion

.. 50 let’s say we invest 20% in DAC, knowing its one front in our fight against
climate change



Where does a $S20 billion investment and a cost reduction down to
$100/tCO, get us?

This would mean building 200 DAC plants each capturing 1 MtCO, per
year. This is equivalent to nearly 5% of our annual emissions.

Determining the land area required depends on what energy system you
decide on for fueling your DAC plant.



Consider 2 Different Energy System Scenarios

1. Natural Gas w/ CCS
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Consider 2 Different Energy System Scenarios

2. Solar Electricity + H,-Fired Kiln
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ir?

Capturing 200 million tonnes from the a

Powered by solar and H,?

Powered by natural gas with CCS?

Land area if Maryland
roughly 32,000 km?

200 DAC plants ~ 1/4 land area

Philadelphia, roughly 96 km?




Today DAC is Taking Place at the Kiloton Scale
How Might we Get to a Gigaton by Mid Century?

Cumulative CO,Removal - DAC [kt]
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Reference: Wilcox et al., under review ES&T (2019)



DAC Siting Low-Carbon Available Thermal Energy

Results of a Recent Study from Our Team

* Regardless of the technology (solvent or sorbent), the energy distribution is 80% thermal and 20% electric
for DAC

* Solid sorbent selected due to low-quality of thermal energy required (i.e., 100 °C)

* Thermal we’re considering from 2 pathways:
e Geothermal — “waste” heat
* Nuclear — 5% slipstream of steam

* Beneficial Reuse: EOR and beverage bottling industry

* Geologic Storage: USGS basin-level storage

» Ultimate Goal: delivered cost of compressed CO, at 99% purity in light of 45Q
* Electricity prices and carbon intensity based upon grid mix of a given DAC site

* Careful of Definitions:
* Cost of Capture — “break-even cost”
* Cost of CO, Avoided — considering fossil-based energy to fuel DAC
* Cost of Net Removed CO, — true cost from climate’s perspective

Reference: Wilcox et al., under review ES&T (2019)



Geological Sequestration — satisfying the 45Q criteria, i.e., > 100 ktCO,/yr
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CO,-EOR LCA

- CO,-EOR started in 1972 with the
first project in the Permian Basin

- CO,-neutral or negative fuel is
technically-feasible through CO,-EOR

only if:

CO, is from DAC and
stacked storage is carried out

Geologic ¢— DAC —  » EOR

storage
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Fuel combustion
I Refining
I Transport
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CO,-EOR as a Bridge to Dedicated CO, Storage

* Through stacked storage, operators can transition from sole EOR projects (today) to co-
optimization of EOR and CO, storage via stacked storage to sole CO, storage
* We need gigatons of storage to impact climate — who will build and operate the fleet?
* Oil and gas industry supports roughly 2% (155.66 thousand jobs as of 2018) of US jobs —
geologists, geophysicists, drilling engineers, petroleum engineers, chemical engineers —
these jobs will be strikingly similar to those required for the dedicated storage projects

Stacked Storage in Gulf Coast

Near-term and long-term N
sources and —sww- Enhanced oil production

Near and long-term sinks to offset development cost and
linked regionally in a speed implementation
pipeline network

Very large volume
storage in stacked brine
formations beneath

l reservoir footprints D Hydrocarbon D Confining

D Saline formation J* “Stacked” storage potential

References: Sue Hovorka, Energy Procedia 2013; Lopez and Moskal, Frontiers in Climate, Negative Emissions Technologies, 2019
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Solid sorbent-based DAC
technology couples well to
isolated and low-quality
geothermal
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Negative Emission Technologies
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Perspective In recent years Direct Air
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stop emitting greenhouse gases and
ultimately to ...
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Review Since the Industrial Revolution,
anthropogenic carbon dioxide (CO2)
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accumulating in the atmosphere and
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the IPCC (IPCC Special Report, 2018),
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Review Soil carbon (C) sequestration is
one of three main approaches to carbon
dioxide removal and storage through
management of terrestrial ecosystems.
Soil C sequestration relies of the adoption
of improved management practices that
increase the amount of
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The Goddard Project - an online tool to access information, mentors,
collaborators and exciting projects in this space
“When | was little, | looked at the space race and dreamed the world would rally around a huge

science project again. 10+ gigaton scale negative emissions is that! It’s urgent, necessary, hard,
dramatic, all of it. It’s the defining project of our generation.” - Ryan Orbuch, Stripe
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We know how to get to millions of tonnes of removal today but getting to gigatons may just take
some rocket scientists! Some Goddards!



goddardproject.org

Climate scientist Katharine Hayhoe said the
first step to fighting climate change is: "Talk
about it." "The majority of the people in the
country don't talk about it. And if we don't
talk about it, why would we care?”

So let’s talk about it and engage the next
generation of future scientists, engineers,
and policy makers in this field.




“It is difficult to say what is impossible, for the dream of yesterday is the hope of
today and the reality of tomorrow.” - Robert Goddard
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Graduated from WPI in 1908 First launch took place in Auburn, MA
March 16, 1926



Don’t dismiss the impact of individual efforts and informed decisions



14.849 t CO,
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Climate change mitigation portfolios should include both avoiding CO,
and removal of CO, from the atmosphere as both will be required at
this late stage to meet our climate goals.



We Choose our Legacy

More Information:

https://users.wpi.edu/~jlwilcox/

https://www.ted.com/talks/jennifer wilcox a new way to remove co2 from

the atmosphere
https://www.npr.org/2019/06/07/730392105/jennifer-wilcox-how-can-we-
remove-co2-from-the-atmosphere-will-we-do-it-in-time
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