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THE PROBLEM

Methane is a significant contributor to global climate 
change, representing 16 to 20% of total greenhouse 
gas emissions, on a CO2-equivalent basis, in 2010 
(Intergovernmental Panel on Climate Change 2014a). 
While multiple sectors emit methane, a major contributor 
is the production and use of fossil fuels, particularly 
the oil and gas industry (U.S. Environmental Protection 
Agency 2012). With global oil and gas production 
growing (Figure 1), understanding the scientific and 
market forces surrounding these emissions is a crucial 
component of climate policy.

1 	  This calculation uses the social cost of methane of $1,300 to $1,600 per metric ton (U.S. Environmental Protection Agency 2018c, p. A-8); and the conversion between tons of CH4 and cubic feet of natural gas in Brandt et 
al. (2014).

Global estimates of oil and gas methane emissions are 
highly uncertain (an important issue that we will explore), 
but one recent study estimated that 3.6 trillion cubic feet 
of methane were emitted by global oil and gas systems in 
2012 (Larsen, Delgado, and Marsters 2015). At current 
estimates of the monetary cost of climate change impacts 
(discussed in detail below), these emissions caused 
roughly $75 to $100 billion in global damages.1 

Although companies would, in most cases, prefer not to 
waste methane, leaks are commonplace because—from 
a company’s perspective—they are not always cost-
effective to prevent or to fix once they occur.

Scientists and environmental advocates are increasingly 
calling attention to the methane problem, and some 
jurisdictions have responded with new policy. At the 
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FIGURE 1: GLOBAL OIL AND NATURAL GAS PRODUCTION
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U.S. federal level, the Obama administration developed 
initiatives through the Bureau of Land Management 
(BLM) and the Environmental Protection Agency (EPA); 
California, Colorado, Pennsylvania, Wyoming, and 
others have proposed state-level rules; the Global 
Methane Initiative is a multilateral initiative across 
dozens of countries; and the One Future Initiative 
brings together leading energy companies to reduce 
methane emissions. However, the Trump administration 
has walked back some Obama-era rules, and as of this 
writing, the EPA is accepting comments on a proposed 
rollback of its earlier regulations (U.S. Environmental 
Protection Agency 2018d).

In this policy brief, we summarize the best available 
evidence on oil- and gas-related methane emissions in the 
U.S. and the damages they cause. We then describe the 
market forces shaping methane leaks and their abatement. 
We conclude by drawing lessons for policymakers. 

THE SCIENCE OF METHANE LEAKS

Around one third of U.S. anthropogenic methane emissions 
are from the oil and gas sector (other major contributors 

are livestock, manure, landfills, and coal mines). The 
reason is simple: the primary component of natural gas is 
methane, and gas leaks occur throughout the supply chain. 
Moreover, since most oil wells also produce natural gas, 
extraction of oil can increase methane emissions. 

Leaks can occur at all stages of the supply chain, including 
production, processing, long distance transmission, and 
local distribution. Some leaks occur when underground 
pipelines corrode; others occur at surface equipment; and 
still others occur when gas is intentionally vented during 
maintenance tasks. Detecting and measuring leaks is hard, 
since methane itself is odorless and colorless—the “rotten 
egg” smell most people associate with natural gas is due 
to an odorant added to help make it detectable. 

Measuring methane emissions has been a key focus 
of recent research. Scholars have published dozens of 
studies examining emissions from specific pieces of oil 
and gas production equipment (e.g., Allen et al. 2013, 
2015), processing equipment (e.g., C. W. Moore et al. 
2014; Marchese et al. 2015; Mitchell et al. 2015), and 
transportation infrastructure (e.g., Phillips et al. 2013; 
Jackson et al. 2014; Gallagher et al. 2015), as well 
as collecting “top-down” measurements of methane 
emissions across broad regions (e.g., Karion et al. 2013, 
2015; Kort et al. 2016; Barkley et al. 2017). 

FIGURE 2: METHANE EMISSIONS FROM A RECENT META-ANALYSIS AND EPA
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A recent meta-analysis of many of these studies 
estimated that roughly 2.3% of natural gas production in 
the United States is emitted as methane (Alvarez et al. 
2018), about 60% higher than the most recent estimates 
from the U.S. Environmental Protection Agency (U.S. 
Environmental Protection Agency 2018a). This revised 
estimate is likely more accurate because it is based on a 
set of measurements that are both more recent and more 
comprehensive than the existing EPA estimates. 

As Figure 2 shows, the meta-analysis found substantially 
higher emissions than EPA estimates: 117% higher during 
production, 13% higher during gathering, 64% higher 
during processing, and 29% higher during transmission 
and storage. And while the meta-analysis did not update 
emissions from the distribution sector nor from “behind-
the-meter” uses like home furnaces or water heaters, other 
work suggests that the EPA’s estimates may be too low 
at those stages of the supply chain as well (Phillips et al. 
2013; Jackson et al. 2014; Alvarez et al. 2018). 

As that methane accumulates in the atmosphere, it 
traps heat, contributing to global warming. And although 
methane’s effects on the climate are not nearly as long 
lasting as carbon dioxide, methane—on a pound for pound 
basis—traps more than 80 times as much heat in the 
atmosphere as CO2 over a 20-year timeframe, and more 
than 30 times as much over 100 years (U.S. Environmental 
Protection Agency 2018b). 

Climate-related damages from methane have been 
estimated at $1,300 to $1,600 per ton (U.S. Environmental 
Protection Agency 2018c, p. A-8). Those estimates were 
part of a major U.S. government initiative by policymakers 
and academics to quantify the risks to society from climate 
change (Interagency Working Group on the Social Cost of 
Carbon 2010, 2013, 2016). Recent peer-reviewed studies 
have estimated even higher damages from climate change 
(e.g., Pindyck 2017; F. C. Moore et al. 2017; Ricke et al. 
2018), though substantial uncertainty remains.

In addition to the climate risks, methane leaks can pose a 
public safety hazard. While methane itself has no direct 
impact on human health at most concentrations, natural 
gas leaks frequently include other gases that are toxic and/
or contribute to ground-level ozone (smog) (Carter and 
Seinfeld 2012; McMullin et al. 2018; Fann et al. 2018). And 
in rare cases, leaking natural gas can cause explosions—

and indeed, fatalities have occurred because of explosions 
from transmission lines (Bowe and Pickoff-White 2015), 
distribution lines (McEvoy 2013), and gathering lines (Elliot 
2017; Soraghan and Lee 2018). 

THE ECONOMICS OF METHANE LEAKS

Companies that produce, process, and transport natural 
gas and oil often argue (e.g., Henry 2016; Silverstein 2018) 
that they have an economic incentive to reduce methane 
emissions and market the captured gas as a product.

According to economic theory, companies will capture 
methane emissions if the economic costs of doing 
so are less than the value of the lost gas. In fact, the 
revenue that private companies stand to gain from 
capturing each unit of methane has been relatively low 
in recent years, as increased domestic natural gas 
production has lowered benchmark prices (Figure 3) to 
an annual average of $2.70 per million British thermal 
units (MMBtu) for 2015–2017 (U.S. Energy Information 
Administration 2018). 

FIGURE 3: U.S. NATURAL GAS PRICES (HENRY HUB SPOT PRICE)
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More importantly, the company’s argument about their 
desire to avoid lost product is only partially correct: while 
there is some economic incentive to prevent leaks, it is not 
at the full, socially-optimal level. A simple rule of thumb from 
the field of economics tells us that government regulation 
is needed to address the methane issue. That rule is as 
follows: if there is an externality associated with methane 
emissions, then private actors will reduce emissions at a 
rate that is less than optimal for society as a whole. 

From society’s perspective, the damage caused by 
each additional MMBtu of methane emissions ranges 
from $2.80 to $27 in addition to the value of the lost 
gas. This number ranges widely because there are a 
number of important assumptions that affect the social 
cost of methane. 

EPA states that, using a domestic-only social cost of 
methane—which is preferred by the Trump Administration, 
and which only accounts for the impacts of global warming 
directly affecting the United States—and a discount rate of 
3%, each metric ton of methane emissions results in $170 
to $200 worth of damages to society, roughly equivalent to 
$2.80–3.30/MMBtu.2 

2 	  Page 3 to 9 of the EPA’s Regulatory Impact Assessment (RIA) for the Proposed Reconsideration of the Oil and Natural Gas Sector Emission Standards for New, Reconstructed, and Modified Sources (U.S. Environmental 
Protection Agency 2018b). For this conversion from metric tons of methane to MMBtu, we use the conversion factors in Brandt et al. (2014) and the conversion of 1 MMBtu per 1.028 Mcf from EPA (U.S. Environmental 
Protection Agency 2018c).

3 	  A global social cost of greenhouse gases and a discount rate of 3% are consistent with methods and models used by federal agencies, in line with the best available peer-reviewed scientific and economic studies, and 
upheld by the courts, as testified by Michael Greenstone to the United States House Committee on Science, Space and Technology, February 28, 2017 (Greenstone 2017).

However, leading economists have argued for the 
application of a global social cost of methane—that is, 
accounting for the global damages of climate change, 
rather than only those directly experienced in the United 
States—under which the damages to society from each 
metric ton of methane emissions are roughly $1,300 
to $1,600—equivalent to $22 to $27/MMBtu (U.S. 
Environmental Protection Agency 2018c, p. A-8).3 
Moreover, these estimates do not reflect advances in the 
scientific understanding of methane’s atmospheric and 
radiative efficacy, which are expected to increase the cost 
estimates for methane (U.S. Environmental Protection 
Agency 2018c, p. 3–12). 

It’s worth noting that these global damages reflect real 
economic risks to the United States, as climate change will 
impact the global economy (Intergovernmental Panel on 
Climate Change 2014b; Burke, Hsiang, and Miguel 2015; 
Burke, Davis, and Diffenbaugh 2018), with which the U.S. 
economy is well-integrated. In addition, climate change 
poses risks for increased civil conflict (Burke et al. 2010; 
Hsiang, Meng, and Cane 2011), with implications for U.S. 
security and the economy.

TABLE 1: PRIVATE VERSUS SOCIAL BENEFITS OF METHANE LEAK REDUCTIONS

Category Beneficiary Magnitude Examples

Market Value of Natural Gas Company $2.70/MMBtu Marketable Product (used for 
heating, cooking, etc.)

Climate U.S. and Global Populations $22–27/MMBtu Rising Temperatures

Sea Level Rise

Extreme Events (wildfires, 
increased hurricane intensity, etc.)

Loss of Ecosystems

Health and Safety Local Populations Unknown >$0/MMBtu Explosion Risk

Air Quality (associated gas 
contributing to smog)
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Stepping back, then, it becomes clear what is missing 
from companies’ claims that their financial incentives are 
properly aligned to detect and abate leaks. Suppose a leak 
repair technology costs $10 per MMBtu of gas captured. A 
private company will not implement that technology, since it 
costs more than the potential revenue of the captured gas 
($2.70). At the same time, society as a whole would very 
much like the company to implement the technology, since 
it avoids $22 to $27 per MMBtu of climate damages such 
as hurricane and wildfire risk, plus the other safety and 
health risks described at left.

POLICY IMPLICATIONS

This simple exercise provides a powerful lesson: government 
regulation to reduce methane emissions can benefit society. 
This is true under any market condition, since a company 
can only capture the private benefits of captured methane, 
whereas society as a whole—not just the company—bears 
the damages associated with climate risks. Moreover, this 
idea points to the weakness inherent in voluntary targets set 
by companies—they do not come with the financial incentive 
that guarantees sufficient emissions abatement. 

In the presence of this externality, companies will fail 
to capture methane emissions when the cost is above 
$2.70/MMBtu, regardless of the full social value of 
captured emissions ($2.70/MMBtu plus $22 to $27/
MMBtu of climate risks, plus additional health and safety 
risks). Government regulations are thus needed to induce 
methane capture, and recent studies show that there 
are many opportunities for low-cost abatement (ICF 
International 2014). Those regulations should be designed 
to capture the “low hanging fruit,” achieving the greatest 
possible reductions for the lowest possible costs. 

A challenge going forward is that we do not yet have 
comprehensive methane monitoring, implying that some 
regulatory options (such as an emissions tax that includes 
methane leaks) are not currently feasible. 

One option, a flat tax on production, processing, and 
transport would not be equivalent—it would equally 
punish gas sold and gas leaked, which would not properly 

incentivize leak capture. At the same time, more extreme 
policy measures, such as fracking bans, would imply that 
a valuable product would not be available to consumers. 
Our own research suggests that the climate damages 
are not currently large enough to justify a ban on fracking 
(Hausman and Kellogg 2015; Raimi 2017). In fact, under 
some conditions, the increased use of natural gas can help 
reduce greenhouse gas emissions in the short term, by 
allowing for a more rapid transition away from coal (Newell 
and Raimi 2014; Raimi 2017).

The options left on the table, then, are regulations on the 
way that natural gas and oil are extracted, processed 
and transported. That is exactly what the Obama 
administration’s rules were intended to target—rules that the 
Trump administration would like to roll back. 

Additional regulatory options may be appropriate at 
the distribution stage. For example, many distribution 
companies are price-regulated by state utility commissions. 
Under this structure, the companies are typically reimbursed 
for the value of their leaked gas, reducing or eliminating 
their financial incentive to plug leaks. California has taken 
steps forward in this domain (California Public Utilities 
Commission 2018), and other policy options are briefly 
described in Hausman and Muehlenbachs (2018) and 
Costello (2013).

Moreover, new technologies are emerging that will allow 
companies throughout the supply chain to more easily 
identify so-called “super-emitters,” the small number of sites 
that account for a large proportion of emissions (Brandt, 
Heath, and Cooley 2016; Mayfield, Robinson, and Cohon 
2017). These technologies may continue to improve over 
time, allowing for lower-cost abatement opportunities 
moving forward. Regulations could take advantage of, and 
perhaps even incentivize, these and other emerging leak 
detection and repair technologies.

In short, market forces will not solve the problem of methane 
leaks. While companies have an incentive to capture the 
escaping gas, that incentive is well below the levels which 
would be best for society as a whole. As technologies 
for detecting and measuring methane emissions become 
cheaper, the private incentive to capture more methane may 
increase. But Economics 101 tells us that in the presence 
of an externality like this one, there is a clear justification for 
government action.
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